

Aaron Powner, M.Ed.

HS Science Teacher – Biology & Chemistry Website: http://mr.powner.org Email: apowner@spectrumcharter.org

Common Polyatomic Ions – Organized by Naming Patterns			
Ion Name	Formula	Ion Name	Formula
ammonium	NH_4^+	nitrite	NO ₂ ⁻
hydronium	H₃O⁺	nitrate	NO ₃ ⁻
		hydroxide	OH ⁻
bromite	BrO ₂ ⁻	oxide	0 ²⁻
bromate	BrO ₃ ⁻	peroxide	0 ₂ ²⁻
carbonate	CO ₃ ²⁻	phosphite	PO ₃ ³⁻
hydrogen carbonate	HCO ₃ ⁻	phosphate	PO ₄ ³⁻
hypochlorite	CIO ⁻	hydrogen phosphate	HPO ₄ ²⁻
chlorite	CIO ₂ -	dihydrogen phosphate	$H_2PO_4^-$
chlorate	CIO ₃ -	sulfite	SO ₃ ²⁻
perchlorate	CIO ₄ -	sulfate	SO4 ²⁻
chromate	CrO ₄ ²⁻	hydrogen sulfate	HSO4 ⁻
dichromate	$Cr_2O_7^{2-}$	thiosulfate	$S_2O_3^{2-}$
iodate	10 ₃ -	arsenite	AsO ₃ ³⁻
periodate	10 ₄ -	arsenate	AsO4 ³⁻
manganate	MnO ₄ ²⁻		
permanganate	MnO ₄	acetate	$C_2H_3O_2$ or CH_3COO^2
		cyanide	CN

Ions are usually named for the metallic atom within the compound

Suffixes...

-ium	positive charge like metals
-ate	the most common number of oxygen atoms for this ion
-ite	one less oxygen

Prefixes...

di-	two (e.g., dihydrogen)
thio-	one oxygen atom is replaced with a sulfur atom
per-	one extra oxygen
hypo-	one less oxygen atom

Memorization Tricks...

acetate	$C_2H_3O_2^-$ or CH_3COO^- are both pains in the *!#\$% to memorize
arsenate	arsenic sounds like the word <i>arse</i> , which is the Scottish version of *!#\$%
cyanide	the name contains the letters <i>C</i> and <i>N</i> like the formula CN ⁻

Common Polyatomic Ions – Organized by Charge Patterns			
Ion Name	Formula	Ion Name	Formula
ammonium	NH_4^+	carbonate	CO ₃ ²⁻
hydronium	H₃O⁺	chromate	CrO ₄ ²⁻
		dichromate	$Cr_2O_7^{2-}$
bromite	BrO ₂ -	manganate	MnO ₄ ²⁻
bromate	BrO ₃ -	oxide	0 ²⁻
hydrogen carbonate	HCO₃ ⁻	peroxide	02 ²⁻
hypochlorite	CIO ⁻	hydrogen phosphate	HPO ₄ ²⁻
chlorite	CIO ₂ -	sulfite	SO ₃ ²⁻
chlorate	CIO ₃ ⁻	sulfate	SO4 ²⁻
perchlorate	CIO ₄ -	thiosulfate	S ₂ O ₃ ²⁻
iodate	10 ₃ -		
periodate	10 ₄ -	arsenite	AsO ₃ ³⁻
permanganate	MnO4 ⁻	arsenate	AsO4 ³⁻
nitrite	NO ₂ ⁻	phosphite	PO ₃ ³⁻
nitrate	NO ₃ ⁻	phosphate	PO ₄ ³⁻
hydroxide	OH ⁻		
dihydrogen phosphate	H ₂ PO ₄ ⁻		
hydrogen sulfate	HSO4 ⁻		
acetate	$C_2H_3O_2$ or CH_3COO^2		
cyanide	CN ⁻		

Common Monatomic Ions:

lon source	name	<u>charge</u>
copper (I)	cuprous	Cu⁺
copper (II)	cupric	Cu ²⁺
iron (II)	ferrous	Fe ²⁺
iron (III)	ferric	Fe ³⁺
lead (II)	plumbous	Pb ²⁺
lead (IV)	plumbic	Pb ⁴⁺
mercury (I)	mercurous	Hg ²⁺
mercury (II)	mercuric	Hg ²⁺
tin (II)	stannous	Sn ²⁺
tin (IV)	stannic	Sn ⁴⁺
chromium (II)	chromous	Cr ²⁺
chromium (III)	chromic	Cr ³⁺
manganese (II)	manganous	Mn ²⁺
manganese (III)	manganic	Mn ³⁺
cobalt (II)	colbaltous	Co ²⁺
cobalt (III)	colbaltic	Co ³⁺

Silicates (family of polyatomic anions):

generic formula is $[SiO_{4-x}^{(4-2x)-}]_n$ where $0 \le x \le 2$

orthosilicate	SiO ₄ ⁴⁻ (x=0)
metasilicate	SiO ₃ ²⁻ (x=1)
pyrosilicate	Si ₂ O ₇ ⁶⁻ (x=0.5, n=2)

Silicate anions are often large polymeric molecules with a large variety of molecular structures including chains, rings, double chains, and sheets. The term "silicate" is used to describe ionic solids such as rocks and minerals common to geology and astronomy. Examples include granite, gravel, garnet, cement, ceramics, glass, etc.

Silicates – family of polyatomic anions consisting of silicon and oxygen Orthosilicate Metasilicate Pyrosilicate